RAMAKRISHNA MISSION VIDYAMANDIRA (Residential Autonomous College affiliated to University of Calcutta)								
FIRST YEAR [BATCH 2018-21] B.A./B.Sc. SECOND SEMESTER (January – June) 2019 Mid-Semester Examination, March 2019								
e : 2	25–03–2019 MATHEMATICS (Honours)							
e : :	11 am – 1 pm Paper : II	Full Marks : 50						
[Use a separate Answer Book <u>for each group</u>]								
	<u>Group – A</u>	[25 marks]						
An	swer any one question:	[1×5]						
a)	State Descartes' rule of signs.							
	Apply this rule to find the nature of the roots of the equation: $x^4 + 2x^2 + 3x - 1 = 0$.							
b)	Solve the equation : $3x^6 + x^5 - 27x^4 + 27x^2 - x - 3 = 0$.							
An	nswer <u>any two</u> questions: [2×4]							
a)	z is a variable complex number such that $\left z - \frac{10}{z}\right = 3$. Find the greatest and the least value of $ z $.							
b)) Prove that $2^8 \sin^9 \theta = \sin 9\theta - 9 \sin 7\theta + 36 \sin 5\theta - 84 \sin 3\theta + 126 \sin \theta$.							
c)	Show that the ratio of the principal values of $(1+i)^{1-i}$ and $(1-i)^{1+i}$ is $sin(log 2)+icos$	$s(\log 2).$						
An	Answer <u>any three</u> questions : [3×4]							
a)	State and prove Leibnitz test for alternating series.							
b)	Show that in absolutely convergent series rearrangement of the terms does no convergence.	ot affect the						
c)	"A subset K of \mathbb{R} is said to be compact if every open cover of K has a finite subcover". Using this definition, show that, if F is a closed subset of a compact set K in \mathbb{R} , then F is compact.							
d)	Let $f:[a,b] \rightarrow \mathbb{R}$ be a function with the property that for every $x \in [a,b]$, the function	on is						
	bounded on a neighbourhood $N(x, \delta_x)$ of x. Prove that f is bounded on [a,b].							
	e : An a) b) An a) b) c) An a) b) c)	(Residential Autonomous College affiliated to University of Calcutta) FIRST YEAR [BATCH 2018-21] B.A./B.Sc. SECOND SEMESTER (January – June) 2019 Mid-Semester Examination, March 2019 MATHEMATICS (Honours) e : 11am – 1pm Paper : II [Use a separate Answer Book for each group] Group – A Answer any one question: a) State Descartes' rule of signs. Apply this rule to find the nature of the roots of the equation: $x^4 + 2x^2 + 3x - 1 = 0$. b) Solve the equation : $3x^6 + x^5 - 27x^4 + 27x^2 - x - 3 = 0$. Answer any two questions: a) z is a variable complex number such that $\left z - \frac{10}{z}\right = 3$. Find the greatest and the least b) Prove that $2^8 \sin^9 \theta = \sin 9\theta - 9\sin 7\theta + 36\sin 5\theta - 84\sin 3\theta + 126\sin \theta$. c) Show that the ratio of the principal values of $(1+i)^{1+i}$ and $(1-i)^{1+i}$ is $sin(log 2) + icos$ Answer any three questions : a) State and prove Leibnitz test for alternating series. b) Show that in absolutely convergent series rearrangement of the terms does no convergence. c) "A subset K of \mathbb{R} is said to be compact if every open cover of K has a finite subc this definition, show that, if F is a closed subset of a compact set K in \mathbb{R} , then F is c d) Let f: [a,b] $\rightarrow \mathbb{R}$ be a function with the property that for every $x \in [a,b]$, the function						

e) Let $f:[a,b] \rightarrow \mathbb{R}$ be continuous on [a,b]. Show that f is bounded on [a,b].

[2×4]

4. Express
$$\begin{bmatrix} 1 & \alpha & 1 \\ \beta & 1 & 1 \\ 1 & 1 & \gamma \end{bmatrix}$$
 as the sum of symmetric and a skew symmetric matrices. [2]

5. Answer **any two** questions :

a) Solve
$$\begin{vmatrix} 11-x & -6 & 2\\ -6 & 10-x & -4\\ 2 & -4 & 6-x \end{vmatrix} = 0$$

b) For a fixed positive integer n, if

$$D = \begin{vmatrix} n! & (n+1)! & (n+2)! \\ (n+1)! & (n+2)! & (n+3)! \\ (n+2)! & (n+3)! & (n+4)! \end{vmatrix}$$
 then show that $\frac{D}{(n!)^3} - 4$ is divisible by n.

Solve by Cramer's rule: c)

.

x + y + z = 1ax + by + cz = 1abx + bcy + caz = 1 where a, b, c are unequal.

Answer <u>any one</u> question from question nos.6 & 7: [1×15]

- a) Prove that every extreme point of the convex set of all feasible solutions of the system 6. Ax = b, $x \ge 0$ corresponds to a B.F.S. [5]
 - b) Solve the following minimization transportation problem, using matrix minima method to get initial B.F.S.:

	А	В	С	a _i
I	6	8	4	14
II	4	9	3	12
Ш	1	2	6	5
b _i	6	10	15	

c) Find all the basic solutions of the followings equations identifying in each case the basic vectors and the basic variables:

$$x_1 + 2x_2 + 3x_3 = 6$$

$$2x_1 + x_2 + 4x_3 = 4.$$

- 7. a) If the L.P.P. Maximize z = cx, subject to Ax = b, $x \ge 0$; admits of an optimal solution, then prove that the optimal solution, will coincide with at least one B.F.S. [7]
 - b) Five operators have to be assigned to five machines. The assignment costs are given below. Operator A cannot operate machine III and operator C cannot operate machine IV. Find the optimal assignment schedule. [5]

	I	П	Ш	IV	V
A	5 7	5	-	2	6
A B	7	4	2	3	4
С	9 7	3	5	-	3
D	7	2	6	7	2
Е	6	5	7	9	1

c) Reduce the feasible solution $x_1 = 2, x_2 = 1, x_3 = 1$ of the system of equations

$$x_1 + 4x_2 - x_3 = 5$$

$$2x_1 + 3x_2 + x_3 = 8$$

to a B.F.S.

[3]

 $\times -$

[4]

[6]